55 research outputs found

    Hydrodynamical modeling of the deconfinement phase transition and explosive hadronization

    Get PDF
    Dynamics of relativistic heavy-ion collisions is investigated on the basis of a simple (1+1)-dimensional hydrodynamical model in light-cone coordinates. The main emphasis is put on studying sensitivity of the dynamics and observables to the equation of state and initial conditions. Low sensitivity of pion rapidity spectra to the presence of the phase transition is demonstrated, and some inconsistencies of the equilibrium scenario are pointed out. Possible non-equilibrium effects are discussed, in particular, a possibility of an explosive disintegration of the deconfined phase into quark-gluon droplets. Simple estimates show that the characteristic droplet size should decrease with increasing the collective expansion rate. These droplets will hadronize individually by emitting hadrons from the surface. This scenario should reveal itself by strong non-statistical fluctuations of observables. Critical Point and Onset of Deconfinement 4th International Workshop July 9-13 2007 GSI Darmstadt,German

    Radial oscillations of neutral and charged hybrid stars

    Full text link
    We construct stellar models of hadron stars and hybrid stars and calculate the frequencies of their lowest radial mode of vibration. Chandrasekhar's equation for radial oscillations is generalized for stars with internal electric fields and earlier versions of that generalization are simplified. For the hybrid stars a Gibbs construction is employed. It is found that the softening of the equation of state associated with the presence of deconfined quarks reduces the oscillation frequency. We show that a slight charge inbalance should lead to increased maximum mass, decreased central density and lower oscillation frequencies

    Clustering in heavy ion collisions : why it could happen and how to observe it?

    Get PDF
    We argue that Clustering in heavy ion collisions could be the missing element in resolving the socalled HBT puzzle, and briefly discuss the different physical situations where clustering could be present. We then propose a method by which clustering in heavy ion collisions could be detectedin a model-independent way

    Thermodynamics of explosions

    Get PDF
    We present our first attempts to formulate a thermodynamics-like description of explosions. The motivation is partly a fundamental interest in non-equilibrium statistical physics, partly the resemblance of an explosion to the late stages of a heavy-ion collision. We perform numerical simulations on a microscopic model of interacting billiard-ball like particles, and we analyse the results of such simulations trying to identify collective variables describing the degree of equilibrium during the explosion.Comment: 6 pages. Talk presented at "Bologna 2000 - Structure of the nucleus" international conference, May 29 - June 3, Bologna, Italy. Shortened version, to appear in the Proceeding

    Hydrodynamics of a quark droplet II: Implications of a non-zero baryon chemical potential

    Full text link
    We present an extended version of the dynamical model for a multi-quark droplet evolution described in our proceeding paper. The model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension, and now a non-zero baryon number. The hadron emission from the droplet is described following Weisskopf's statistical model. We consider evolutions of droplets with different initial temperatures and net baryon number. It is found that the introduction of a non-zero net baryon number does not change the lifetime of the droplets significantly. Only when we consider an initially very baryon-rich, low-temperature droplets is the lifetime is decreased significantly. We have, furthermore, found a convergence of both baryon chemical potential and temperature toward the values μB\mu_{\rm B} \approx 450 MeV and T150T \approx 150 MeV. This convergence is linked to the competing emission of baryons versus mesons.Comment: 15 pages, 5 figure

    Strange quark matter within the Nambu-Jona-Lasinio model

    Get PDF
    Equation of state of baryon rich quark matter is studied within the SU(3) Nambu Jona-Lasinio model with flavour mixing interaction. Possible bound states (strangelets) and chiral phase transitions in this matter are investigated at various values of strangeness fraction rs. The model predictions are very sensitive to the ratio of vector and scalar coupling constants, ¾ = GV /GS. At ¾ = 0.5 and zero temperature the maximum binding energy (about 15 MeV per baryon) takes place at rs C 0.4. Such strangelets are negatively charged and have typical life times < 10 7 s. The calculations are carried out also at finite temperatures. They show that bound states exist up to temperatures of about 15 MeV. The model predicts a first order chiral phase transition at finite baryon densities. The parameters of this phase transition are calculated as a function of rs

    Particle production by time-dependent meson fields in relativistic heavy ion-collisions

    Get PDF
    According to the Walecka mean field theory of nuclear interaction the collective mutual deceleration of the colliding nuclei gives rise to the bremsstrahlung of real and virtual ! mesons. It is shown that decays of these mesons may give a noticeable contribution to the observed yields of the baryon antibaryon pairs, dileptons and pions. Excitation functions and rapidity distributions of particles produced by this mechanism are calculated under some simplifying assumptions about the space time variation of meson fields in nuclear collisions. The calculated multiplicities of coherently produced particles grow fast with the bombarding energy, reaching a saturation above the RHIC bombarding energy. In the case of central Au+Au collisions the bremsstrahlung mechanism becomes comparable with particle production in incoherent hadron hadron collisions above the AGS energies. The rapidity spectra of antibaryons and pions exhibit a characteristic two hump structure which is a consequence of incomplete projectile target stopping at the initial stage of the reaction. The predicted distribution of e+e pairs has a strong peak at invariant masses Me+e < 0.5 GeV
    corecore